Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 107 Pt B: 211-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25220871

RESUMO

Venoms from three poneromorph ant species (Paraponera clavata, Ectatomma quadridens and Ectatomma tuberculatum) were investigated for the growth inhibition of Gram-positive and Gram-negative bacteria. It was shown that the venom of E. quadridens and its peptide fraction in particular possess marked antibacterial action. Three linear antimicrobial peptides sharing low similarity to the well-known ponericin peptides were isolated from this ant venom by means of size-exclusion and reversed-phase chromatography. The peptides showed antimicrobial activity at low micromolar concentrations. Their primary structure was established by direct Edman sequencing in combination with mass spectrometry. The most active peptide designated ponericin-Q42 was chemically synthesized. Its secondary structure was investigated in aqueous and membrane-mimicking environment, and the peptide was shown to be partially helical already in water, which is unusual for short linear peptides. Analysis of its activity on different bacterial strains, human erythrocytes and chronic myelogenous leukemia K562 cells revealed that the peptide shows broad spectrum cytolytic activity at micromolar and submicromolar concentrations. Ponericin-Q42 also possesses weak toxic activity on flesh fly larvae with LD50 of ∼105 µg/g.


Assuntos
Venenos de Formiga/química , Anti-Infecciosos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Venenos de Formiga/farmacologia , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células K562/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peptídeos/isolamento & purificação , Estrutura Secundária de Proteína
2.
Biochim Biophys Acta ; 1818(11): 2868-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22842000

RESUMO

Recently, the novel peptide named purotoxin-1 (PT1) has been identified in the venom of the spider Geolycosa sp. and shown to exert marked modulatory effects on P2X3 receptors in rat sensory neurons. Here we studied another polypeptide from the same spider venom, purotoxin-2 (PT2), and demonstrated that it also affected activity of mammalian P2X3 receptors. The murine and human P2X3 receptors were heterologously expressed in cells of the CHO line, and nucleotide-gated currents were stimulated by CTP and ATP, respectively. Both PT1 and PT2 negligibly affected P2X3-mediated currents elicited by brief pulses of the particular nucleotide. When subthreshold CTP or ATP was added to the bath to exert the high-affinity desensitization of P2X3 receptors, both spider toxins strongly enhanced the desensitizing action of the ambient nucleotides. At the concentration of 50nM, PT1 and PT2 elicited 3-4-fold decrease in the IC(50) dose of ambient CTP or ATP. In contrast, 100nM PT1 and PT2 negligibly affected nucleotide-gated currents mediated by mP2X2 receptors or mP2X2/mP2X3 heteromers. Altogether, our data point out that the PT1 and PT2 toxins specifically target the fast-desensitizing P2X3 receptor, thus representing a unique tool to manipulate its activity.


Assuntos
Receptores Purinérgicos P2X3/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Primers do DNA , Espectrometria de Massas , Reação em Cadeia da Polimerase , Espectrofotometria Ultravioleta
3.
Ann Neurol ; 67(5): 680-3, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20437566

RESUMO

P2X3 purinoreceptors expressed in mammalian sensory neurons play a key role in several processes, including pain perception. From the venom of the Central Asian spider Geolycosa sp., we have isolated a novel peptide, named purotoxin-1 (PT1), which is to our knowledge the first natural molecule exerting powerful and selective inhibitory action on P2X3 receptors. PT1 dramatically slows down the removal of desensitization of these receptors. The peptide demonstrates potent antinociceptive properties in animal models of inflammatory pain.


Assuntos
Dor/tratamento farmacológico , Dor/metabolismo , Peptídeos/uso terapêutico , Receptores Purinérgicos P2/metabolismo , Venenos de Aranha/química , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Chondrus , Citidina Trifosfato/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Inflamação Neurogênica/induzido quimicamente , Inflamação Neurogênica/complicações , Dor/etiologia , Técnicas de Patch-Clamp/métodos , Antagonistas do Receptor Purinérgico P2 , Ratos , Ratos Wistar , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X3 , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Transfecção/métodos
4.
Biochem J ; 411(3): 687-96, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18215128

RESUMO

Eight linear cationic peptides with cytolytic and insecticidal activity, designated cyto-insectotoxins (CITs), were identified in Lachesana tarabaevi spider venom. The peptides showed antibiotic activity towards Gram-positive and Gram-negative bacteria at micromolar concentrations as well as toxicity to insects. The primary structures of the toxins were established by direct Edman sequencing in combination with enzymatic and chemical polypeptide degradation and MS. CITs represent a novel class of cytolytic molecules and spider venom toxins. They are the first example of molecules showing equally potent antimicrobial and insecticidal effects. Analysis of L. tarabaevi venom gland expressed sequence tag database revealed the primary structures of the protein precursors; eight peptides homologous with the purified toxins were additionally predicted. CIT precursors share a conventional prepropeptide structure with an acidic prosequence and a processing motif common to most spider toxin precursors. The most abundant peptide, CIT 1a, was chemically synthesized, and its lytic activity on different bacterial strains, human erythrocytes and lymphocytes, insect cells, planar lipid bilayers and lipid vesicles was characterized. The spider L. tarabaevi is suggested to have evolved to rely on a unique set of linear cytolytic toxins, as opposed to the more common disulfide-containing spider neurotoxins.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Peptídeos/classificação , Alinhamento de Sequência , Venenos de Aranha/classificação
5.
Pflugers Arch ; 447(1): 55-63, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12905030

RESUMO

The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1 had a concentration of half-maximal inhibition (IC50 value) of 27 nM, while wild-type BeKm-1 inhibited hERG channels with an IC50 value of 7 nM. Mono-[125I]-BeKm-1 was found to bind in a concentration-dependent manner and with picomolar affinity to hERG channel protein in purified membrane vesicles from transfected human embryonic kidney cells (HEK-293). Under optimized conditions the equilibrium dissociation constant ( Kd) values from saturation and kinetic binding analysis were 13 and 14 pM, respectively. Both the association and dissociation of [(125)I]-BeKm-1 were fast (association rate constant, k(on)=3.6 x 10(7) M(-1)s(-1); dissociation rate constant, k(off)=0.005 s(-1)). Wild-type BeKm-1 displaced binding of [125I]-BeKm-1 with half-maximal inhibitory concentrations of 44 pM. In contrast, competition experiments with a BeKm-1 mutant BeKm-1-K18A, in which the toxin interaction site is disrupted, resulted in a drop in affinity by more than 300-fold as compared to the wild-type toxin. Iberiotoxin and apamin, peptide inhibitors of Ca2+-activated K+-channels, had no effect on [125I]-BeKm-1 binding. Adding the classical rapid delayed rectifier current (IKr) blocker E-4031 reduced binding of [125I]-BeKm-1 to the hERG channel to an IC50 of 7 nM. In autoradiographic studies on rat hearts, binding of [125I]-BeKm-1 was dose-dependent and could partially be displaced by the addition of excess amounts of non-radioactive BeKm-1. The density of the radioactive signal was equally distributed in the myocardium of both the ventricle and atria indicating a homogenous expression of hERG channels throughout the heart.


Assuntos
Peptídeos/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Venenos de Escorpião/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Radioisótopos do Iodo/metabolismo , Ligantes , Masculino , Ligação Proteica/fisiologia , Ratos
6.
J Biol Chem ; 277(45): 43104-9, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12151390

RESUMO

The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located in the alpha-helix and following loop whereas the "traditional" functional site of other short scorpion toxins is formed by residues from the beta-sheet. Thus the unique location of the binding site of BeKm-1 provides its specificity toward the HERG channel.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Ligação a DNA , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Venenos de Escorpião/química , Transativadores , Sequência de Aminoácidos , Sítios de Ligação , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos , Canais de Potássio/química , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/toxicidade , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Soluções , Especificidade por Substrato , Regulador Transcricional ERG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...